
Verifying Enhanced PMP Behavior in Ibex
Marno van der Maas1∗, Andreas Kurth1, Harry Callahan1, Greg Chadwick1

1lowRISC CIC, Cambridge, UK

Abstract

To uphold the principle of least privilege, RISC-V can further limit M mode’s access to memory through PMP enhancements
in the Smepmp extension. Ibex is an open-source processor, and it uses these enhancements to be a compelling choice for
security-critical applications. Because Ibex is thoroughly verified and production quality, the verification requirements are
high for adding this extension. In this proposal, we design a coverage plan for Smepmp, generate sensible constrained-random
Smepmp configurations and add directed tests to maximize coverage of corner cases. Smepmp poses a particular challenge
because many transitions and configurations lead to immediate faults, such as when MML is enabled and the PC is not in an
executable region. Through this work, we improve the overall PMP coverage with Smepmp from 63 % to 98 %.

Introduction
Physical memory protection (PMP) is RISC-V’s answer to
the need for a memory protection unit [1]. It is a technique
to enforce read, write and execute privileges on specified
memory regions. The extension, Smepmp, improves the
original PMP specification by further limiting memory
access of M mode (machine mode) [2]. It does this in three
ways:

• Machine mode lockdown (MML): allows regions to
have different permissions in M mode and in supervi-
sor/user modes.

• Machine mode whitelist policy (MMWP): prevents
M mode from accessing regions outside of the PMP.

• Rule lock bypass (RLB): defines whether M mode is
allowed to bypass PMP lock bits or not.

MML in particular is an invasive feature where the four
permission bits take on alternate behavior. For example, if
the lock (L), execute (X), write (W) and read (R) bits are
all set, this means a region is shared read-only. MMWP
changes the default behavior of the PMP by disallowing
memory accesse that do not match any region, and RLB
allows locked PMP regions to be edited.

Ibex is a production-quality embedded RISC-V CPU that
supports Smepmp for security applications [3]. The project
uses RISCV-DV [4] to generate random instructions for ver-
ification which stimulates PMP very well. However, before
this work the coverage collected for Smepmp was lacking.
To gain confidence that Ibex properly implements Smepmp,
we define new coverpoints and add new constraints to the
verification environment.

Functional Coverage
To give confidence in the functional coverage of Smepmp,
we add coverpoints and crosses for relevant behavior. Cov-
erpoints are a way to collect signals to ensure certain

∗Corresponding author: mvdmaas@lowrisc.org

Table 1: Global covergroup for Smepmp across all PMP regions.

Name Description

Code & data Unmatched requests with
MMWP and MML.

mseccfg RLB, MMWP and MML on
and off.

Stickiness Smepmp modes cannot be
unset.

Write mseccfg Write to each mode.

Table 2: Regional Smepmp covergroup for each individual PMP
region.

Name Description

Region mode Off, TOR, NA4 and NAPOT.
NAPOT address All possible region sizes.
Permissions MML, L, X, W, R.
Code & data Each entry with each mode

and permissions.

Legend:

TOR Top of range
NA4 Four-byte aligned
NAPOT Power-of-two aligned

functionality is tested. For example, we can add a cover-
point for the MML bit being enabled in mseccfg. Crosses
are useful to track whether multiple relevant behaviors are
seen at the same time, for example that a data access occurs
while MML is enabled.

In this work, we add a global covergroup that looks for
behavior across all PMP regions, and a regional covergroup
to track behavior for each individual region. The coverpoints
and crosses for the global covergroup are shown in Table 1,
and those for the regional covergroup are shown in Table 2.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:mvdmaas@lowrisc.org


Basic Smepmp testing
Using the default RISCV-DV test for PMP, our global and
regional coverage are 68.3 % and 62.7 %, respectively. To
start testing Smepmp, we add directed static PMP configu-
rations for MMWP, RLB and MML while still randomly
generating the test body. These tests improve our coverage
to 85.8 % globally and 86.1 % regionally.

Random Smepmp configurations
Most of the remaining coverage holes are because ofmissing
Smepmp configurations. It would be infeasible to write
specific tests for all of these; a more optimal approach is to
use constrained-random testing to systematically explore
the problem space. However, the problem with random
configurations of PMP and Smepmp enhancements is that
most of them gather no useful coverage by falling into
faulting loops. For example, when MML is enabled without
having the trap handler and test code set as executable, the
processor ends up in an infinite trap loop. It is important to
verify this behavior, but we also need tests to make forward
progress and collect coverage of other relevant behavior.
To do so, we constrain the random PMP test to place the
kernel stack in a readable/writable region and the test code
and trap handlers in an executable region. The kernel stack
is needed for the trap handlers to behave properly.
Another modification is making the trap handler skip

loads and stores that fail because of a locked PMP region or
because of MMWP being enabled. To skip loads and stores,
code regions must be readable so that the trap handler can
check whether the faulting instruction is compressed or
not and increment the program counter accordingly. This
has the benefit that we do not incur the startup cost after a
single faulting load or store and can continue to stimulate
the current PMP configuration further.
We also add random writes to mseccfg to ensure that

the bits in this register are sticky. For the verification
environment, we add an infinite trap detection mechanism
to exit early when the processor enters a trap loop. After
making all of these changes our coverage increases to
96.3 % and 93.1 % for global and regional covergroups,
respectively.

Directed testing
The constrained-random PMP test gets us very close to
full coverage, but returns diminish as runtime increases
and there are relevant behaviors that are unlikely to be hit.
An example of such behavior is trying to add execution
permission to a PMP region when MML is enabled, which
is illegal according to the Smepmp specification. Another
undertested behavior is trying to execute instructions from
regions with each permutation of the MML permissions.
This is because such accesses cause unrecoverable faults

and cannot be effectively skipped like faulting loads and
stores can. Finally, we need to cover an instruction access
where the instruction straddles two PMP regions and both
cause a fault.

To hit these cases, while keeping the runtime reasonable,
we introduce directed Smepmp tests that deliberately put
the PMP in an otherwise undertested configuration and do
the appropriate access or modification to hit the coverpoints.
After adding these tests, our coverage is 97.0 % for the
global covergroup and 98.1 % for the regional covergroup.

Conclusion
Smepmp is a valuable extension to the base RISC-V PMP
feature and it is paramount that Ibex’s implementation is
thoroughly verified. This work explains which coverpoints
are important for Smepmp and goes through the steps of
augmenting the existing verification environment to improve
the coverage. Our work improves the global coverage from
68 % to 97 % and the regional coverage from 63 % to
98 %. All our work has been upstreamed to the Ibex [3]
and RISCV-DV [4] repositories.

In the future, formal analysis could be performed to gain
further confidence in the hardware, similar to approaches
taken for regular PMP [5]. Additionally, verification can be
done against the official specification of RISC-V in Sail [6].
In general, our work improves the state of verification of
Smepmp, which we consider to be an essential RISC-V
security extension. This further strengthens Ibex’s position
as a production-ready RISC-V core for security-sensitive
applications.

References
[1] Andrew Waterman, Krste Asanović, and John Hauser. The RISC-V

instruction set manual, volume II: Privileged architecture, document
version 20211203. Tech. rep. RISC-V Foundation, 2021.

[2] Nick Kossifidis et al. PMP Enhancements for memory access and
execution prevention on Machine mode (Smepmp). Tech. rep. RISC-
V Foundation, 2021.

[3] lowRISC contributors. Ibex RISC-V Core. https://github.com/
lowRISC/ibex. 2023.

[4] Tao Liu, Anil Sharman, and Puneet Goel. RISCV-DV: Random
instruction generator for RISC-V processor verification. https:
//github.com/chipsalliance/riscv-dv. 2023.

[5] Kevin Cheang et al. “Verifying RISC-V Physical Memory Protec-
tion”. In: CoRR abs/2211.02179 (2022). arXiv: 2211.02179. url:
https://doi.org/10.48550/arXiv.2211.02179.

[6] Prashanth Mundku et al. RISCV Sail Model. https://github.
com/riscv/sail-riscv. 2023.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://github.com/chipsalliance/riscv-dv
https://github.com/chipsalliance/riscv-dv
https://arxiv.org/abs/2211.02179
https://doi.org/10.48550/arXiv.2211.02179
https://github.com/riscv/sail-riscv
https://github.com/riscv/sail-riscv

	Introduction
	Functional Coverage
	Basic Smepmp testing
	Random Smepmp configurations
	Directed testing
	Conclusion

